Картографические проекции сегодня – это математические способы изображения всего земного эллипсоида или его части на плоскости, систематическое преобразование широт и долгот с поверхности сферы на плоскость.
Для создания географических карт выполняют две последовательных операции:
- Перенесение (проектирование) поверхности геоида с его сложным рельефом на поверхность эллипсоида вращения или шара.
- Дальнейшее его проектирование на плоскость (преобразование системы географических координат в декартовы) с использованием одной из картографических проекций.
При этом картографы пытаются добиться как можно меньшего количества искажений. Сделать мелкомасштабную карту совсем без искажений невозможно. На крупномасштабных (топографических) картах искажения почти отсутствуют. В зависимости от назначения карты одни погрешности допустимы, другие нет. Поэтому и существуют разные типы проекций, предназначенные для сохранения некоторых свойств сферы за счёт других её свойств.

Виды искажений при использовании картографических проекций
Разложить на плоскости эллипс или шар очень трудно, для того, чтобы убедиться в этом, можно попробовать это сделать на практике. Сложить кусочки апельсиновой кожуры так, чтобы между ними не было пустых мест и попробовать получить непрерывную ровную плоскость. Корка соберётся в складки, она не уложится без промежутков.
При любом способе разложения шара на плоскость присутствует один или несколько типов искажения:
- базовое – искажение расстояний (длин линий), от него зависит степень других видов деформаций. Признак: между соседними параллелями отрезки меридианов неодинаковы по длине;
- площадей. При таком искажении между соседними параллелями форма и величина (а значит и площадь) ячеек неодинакова;
- углов – углы между определённым направлением на местности и на карте не совпадают. Узнать его можно по тому, что углы между параллелями и меридианами не являются прямыми;
- форм. При одинаковой площади форма клеток, находящихся на одной широте, разная.
При этом типы искажений взаимозависимы, при уменьшении одного из показателей увеличивается другой. В зависимости от назначения карты, на ней присутствуют места с нулевым искажением, с удалением от него количество искажений увеличивается. Поэтому на карте есть три вида масштаба:
- основной (тот, что подписан), действующий на линии нулевого искажения,
- частные (определяются при помощи эллипса искажений), их может быть бесконечно много;
- средний (совокупность частных масштабов отрезка).
При выборе типа картографической проекции сначала строят изоколы – изолинии, соединяющие точки с одинаковым искажением.

Источник: https://ds04.infourok.ru/uploads/ex/0617/00148bfe-04623ef1/hello_html_329bd6b7.jpg
Типы проекций по характеру искажений
Для разных целей нужны карты с отсутствием тех или иных видов искажений. При помощи разных проекций можно сделать так чтобы на них отсутствовали погрешности либо углов, либо длин, либо площадей. Чем больше искажаются углы, тем меньше искажаются площади и наоборот. По характеру искажений все картографические проекции делят на:
- равноугольные (конформные);
- равновеликие (эквивалентные);
- произвольные:
- равнопромежуточные (эквидистантные).
Равноугольные картографические проекции
На картах, построенных по этому типу, нет искажений направлений и углов. Направления на местности совпадают с таковыми на карте, прямые линии на местности остаются прямыми на карте. Они используются для прокладки точных маршрутов и применяется на навигационных и топографических картах.
Зато на них сильно изменены площади объектов Земли и линейный масштаб карты зависит от положения на ней данной точки. Типичный пример равноугольной проекции – цилиндрическая проекция Герхарда Меркатора (Герарда Кремера), созданная ещё в 1569 г и используемая в морской навигации до сих пор. Примером использования Проекции Меркатора является равноугольная проекция Гаусса-Крюгера.
В этой проекции создаются отдельные океанологические, климатические и геофизические карты.

Файл доступен по лицензии: Creative Commons Attribution-Share Alike 3.0 Unported
Равновеликие картографические проекции
Это проекции для построении карт, на которых нет искажения площадей (масштаб площадей имеет везде одну и ту же величину), зато сильно растёт погрешность форм и углов (материки и океаны в высоких широтах сплющиваются). Картами, построенными в равновеликих проекциях, удобно пользоваться для расчета площадей, например типов почв, посадок кукурузы, облесенности материков, загрязнения океана или радиоактивного загрязнения суши и др.
Их применяют для составления климатических, почвенных, геофизических, геологических, зоогеографических, геоботанических, экономических, исторических, этнографических, административных карт.

Произвольные картографические проекции
Углы и площади здесь искажаются, но значительно меньше, чем в предыдущих двух проекциях. Поэтому они наиболее используемы. Произвольные картографические проекции не относятся ни к равновеликим, ни к равноугольным.

Равнопромежуточные картографические проекции
Это тип произвольных картографических проекций. В них масштаб длин одного из главных направлений остаётся неизменным. Пример: прямая азимутальная проекция. Равнопромежуточные проекции используют для создания общегеографических, физических, тектонических, политических и др. видов карт.
Характер искажения всегда входит в общее название проекции (равновеликая азимутальная, равноугольная коническая, равновеликая цилиндрическая и т.д.).
Интересно,
что древнейшей картографической проекцией является гномическая проекция, применённая на картах звёздного неба Фалесом Милетским ещё в Древней Греции.

Классификация географических проекций по геометрической фигуре, являющейся вспомогательной поверхностью
На плоскость эллипсоид проектируют при помощи геометрических фигур, а поверхности, на которые он проектируется, могут быть секущими (разрезающей) фигуру или касательными (соприкасается, но не разрезает глобус) к ней. При этом на полученной карте касательные и секущие линии (стандартные) представлены неискажёнными.
Проекции также бывают по-разному ориентированы.
- Нормальными называют проекции, в которых оси вспомогательной поверхности совмещаются с осью земного эллипсоида или шара, а спроектированная поверхность размещается касательно к полюсу.
- Поперечными – ось располагают под прямым углом к оси Земли.
- Наклонными – под любым другим (непрямым) углом к оси Земли.

Поверхности, которые могут быть развёрнуты на плоскость или лист без растяжений, разрыва или усадки, называются разрабатываемыми поверхностями. Ими являются цилиндр, конус и плоскость. Поэтому по вспомогательной поверхности проекции делятся на:
- цилиндрические – вспомогательная поверхность – боковая цилиндра, касательная к эллипсоиду или секущая эллипсоида. Меридианы изображаются равностоящими параллельными прямыми, а параллели – прямыми, перпендикулярными меридианам. Пример – нормальная равноугольная цилиндрическая проекция Меркатора.

Автор: Rylem — собственная работа, CC BY-SA 4.0
- псевдоцилиндрические – центральный меридиан на них представлен в виде отрезка прямой, другие меридианы длиннее центрального и изогнуты наружу. Параллели псевдоцилиндрических проекций – прямые линии.

- конические – боковая поверхность секущей или касательной конуса. Конической называется любая проекция, в которой меридианы представлены прямыми линиями, выходящими из одного центра и равноудаляющимися к периферии, а параллели – дуги, центрированные на вершине. При построении картографы чаще выбирают 2 основные параллели, которые могут быть секущими или касательными. Искажения масштаба и формы на них низкие. К северу и югу от стандартных параллелей расстояния растягиваются, а между стандартными параллелями расстояния сжимаются. Может использоваться и одна стандартная параллель, тогда с удалением от неё расстояния растягиваются. Применяется для территорий, вытянутых вдоль параллелей, например, все карты России построены в конических проекциях.
- псевдоконические – проекции, где центральный меридиан – прямая, остальные меридианы кривые линии, а параллели – прямые, промежутки между которыми уменьшаются к полюсам.
- азимутальные – вспомогательной поверхностью служит секущая или касательная плоскость. Параллели на них – полные окружности. Меридианы – их радиусы. По меридианам такая проекция является равнопромежуточной и сохраняет вдоль них главный масштаб. Именно разновидностью азимутальной проекции является первая известная на Земле гномическая проекция.

- поликонические – боковые вспомогательные поверхности нескольких касательных конусов, каждая из которых затем разворачивается на плоскость. Экватор и средний меридиан – перпендикулярные прямые, параллели – дуги, выпуклостью направленные к экватору, меридианы – кривые малой кривизны, направленные выпуклой стороной от центрального меридиана.
- условные – те, что ни входят ни в один из выше перечисленных классов. Параллели и меридианы на них являются кривыми очень разного вида.
Полное название проекций может быть следующим: косая азимутальная равновеликая, нормальная равноугольная цилиндрическая, произвольная поликоническая и т.д.
Выбор проекции в зависимости от величины территории
- Карты мира по характеру искажения строят в произвольных, равновеликих, реже в равноугольных проекциях. По виду сетки – применяют цилиндрические, поликонические или псевдоцилиндрические, реже псевдоазимутальные.
- Карты полушарий строят в азимутальной проекции, чтобы передать западное и восточное полушария – в равновеликой, северное и южное – в равнопромежуточной.
- Для построения карт материков в основном используют азимутальные проекции.
- Для карт России – нормальная коническая с двумя стандартными параллелями. Для начальных школьных карт – косая произвольная цилиндрическая.
