Дигибридное скрещивание. Закон независимого наследования. Урок 3

Дигибридное скрещивание при независимом наследовании

Поведение альтернативных форм одного признака Менделю объяснил принцип расщепления, наблюдаемый при моногибридном скрещивании. Следующий его шаг – прослеживание наследования двух разных признаков: дигибридное скрещивание.

С пониманием поведения отдельных черт, Мендель продолжал спрашивать себя, а как ведут себя разные черты по отношению друг к другу, влияют ли они друг на друга или нет. Он решил проследить за тем, как передаются 2 признака, не обращая внимание на множество других, отличающих родителей характеристик.

Как Мендель проводил дигибридное скрещивание

Рассмотрим скрещивание, включающее различные аллели формы семян (круглые R и морщинистые r) и аллельные признаки цвета семян (желтый Y, зеленый y). Скрещивая чистые линии растений (дигомозиготы) с круглыми жёлтыми семенами (RRYY) и с морщинистыми зелеными (rryy), Мендель получил единообразное гетерозиготное потомство F1 с одним и тем же фенотипом (круглые и жёлтые семена) и генотипом (RrYy – дигетерозигота).

При записи такого типа задач нужно помнить, что каждая пара аллелей расходится в разные гаметы и два аллельных гена, отвечающие за один признак, например RR, не попадают в одну половую клетку.  

R:♀ RRYY♂ rryy
G:RYry
F1:RrYy

Жёлтые гладкие семена.

 

Результат  показал, что закон единообразия гибридов первого поколения проявляется не только при моногибридном, но и при дигибридном скрещивании. Теперь мы знаем, что это соблюдается при условиях, что родительские формы гомозиготны, при полном доминировании и когда неаллельные гены лежат в негомологичных хромосомах.

Дигибридное скрещивание, генетическая запись фото
Для наглядности скрещивание можно записывать так, чтобы было видно, что аллельные гены лежат в разных хромосомах

Дигибридное скрещивание: расщепление по фенотипу в поколении F2

Анализируя полученные результаты, сначала рассмотрим количество возможных фенотипов в поколении F2 , которое дало данное дигибридное скрещивание. Мендель сомневался, увидит ли он только два родительских фенотипа: с круглыми жёлтыми и морщинистыми зелёными семенами, или дополнительно появиться круглые зелёные, морщинистые желтые семена.

Если бы признаки наследовались сцеплено, то образовалось бы только два типа гамет: RY и ry. Но в случае с горохом и признаками, выбранными Менделем наследование происходило независимо, поэтому у родителей второго поколения образовалось 4 типа гамет: RY, ry, Ry и rY. Так проявился уже знакомый нам закон расщепления.

Дигибридное скрещивание удобно рассматривать в решетке Пеннета

Чтобы рассмотреть все варианты возможного потомства, удобно построить решетку Пеннета. Это квадрат 4х4 с 16 возможными результатами. Из неё мы видим, что есть 9 растений с круглыми желтыми, 3 с морщинистыми желтыми, 3 с круглыми зелеными и 1 с морщинистыми зелеными семенами. Это демонстрирует фенотипическое соотношение 9:3:3:1, характерное для признаков, которые ведут себя независимо.

R:♀ RrYy♂ RrYy
G:RY, ry, Ry, rYRY, ry, Ry, rY

 

Решётка Пеннета

               ♂

RYryRyrY
RYRRYYRrYyRRYyRrYY
ryRrYyrryyRryyrrYy
RyRRYyRryyRRyyRrYy
rYRrYYrrYyRrYyrrYY
Наследование окраски и формы семян фото
Решётка Пеннета наглядно

Принцип независимого наследования. Третий закон Менделя

Что же на самом деле наблюдал Мендель? Из 556 семян, полученных при дигибридном скрещивании, он увидел следующие фенотипические результаты:

  • 315 круглых жёлтых (обозначаются R_Y_, где подчёркивание указывает на наличие любого аллеля);
  • 108 круглых зелёных (R_ yy);
  • 101 морщинистых жёлтых (rr Y__);
  • 32 морщинистых зелёных (rr yy).

Признаки семян гороха фото

Эти результаты очень близки к соотношению 9:3:3:1. (Ожидаемое 9:3:3:1 соотношение для 556 потомства составляет 313:104:104: 35). Соотношение 9:3:3:1 называют фенотипическим радикалом и используют при решении задач.

Оказалось, что аллели двух генов ведут себя независимо друг от друга и не влияют на неаллельные признаки. Круглые и морщинистые семена встречаются в соотношении примерно 3:1 (423: 133), так же как и жёлтые и зелёные (416:140). Аналогичные результаты Мендель получил и для других пар признаков. Значит, дигибридное скрещивание – это два независимо протекающих моногибридных скрещивания.

Отсюда можно сделать вывод, что при скрещивании гетерозиготных особей, отличающихся по нескольким парам альтернативных признаков, в потомстве наблюдается расщепление по фенотипу в соотношении (3+1)n, где n – число признаков в гетерозиготном состоянии.

Мы называем это третьим законом Менделя – законом независимого наследования.

Закон независимого наследования имеет следующую формулировку: при скрещивании двух гомозиготных организмов, анализируемых по двум (или более) парам альтернативных признаков, во втором поколении наблюдается независимое комбинирование генов разных аллельных пар и соответствующих им признаков.

Цитологическое объяснение независимого наследования

К независимому наследованию приводит поведение хромосом во время мейоза. Гены двух разных пар признаков находятся в негомологичных хромосомах. У гомозиготных особей образуется только один тип гамет, содержащих по одной из каждой пары негомологичных хромосом. В процессе оплодотворения диплоидный набор хромосом восстанавливается. Генотип гибридов первого поколения представлял собой следующее сочетание RrYy (или АаВв, чтобы проследить по иллюстрации).

Так как негомологичные хромосомы расходятся произвольно, то гибридные особи дают 4 типа гамет: Ав, АВ, аВ, ав. Попарное слияние этих типов гамет при оплодотворении даёт 16 возможных вариантов зигот.

Дигибридное скрещивание - цитологические основы наследования
Цитологические основы законов единообразия и незакисимого наследования признаков при дигибридном скрещивании

Гипотеза чистоты гамет

Для объяснения результатов скрещивания, проведенного Г. Менделем, У. Бэтсон (1902) предложил гипотезу «чистоты гамет». Ее можно свести к следующим двум основным положениям:

  • у гибридного организма гены не гибридизируются (не смешиваются), а находятся в чистом аллельном состоянии;
  • из аллельной пары в гамету попадает только один ген вследствие расхождения гомологичных хромосом или хроматид при мейозе.

Полигибридное скрещивание

Число пар генов и соответствующих им признаков, по которым организмы отличаются друг от друга, часто бывает больше двух. Анализ данных по большому количеству аллельных пар называют полигибридным скрещиванием.

При таком анализе приходится изучать большое количество генотипов и фенотипов. Но закономерности, которым подчиняется их наследование часто бывает таким же как при моно- и дигибридном скрещивании.

Когда соблюдается третий закон Менделя?

Законы Менделя носят статистический характер (выполняются на большом количестве особей) и являются универсальными, т. е. они присущи всем живым организмам. Для проявления третьего закона Менделя необходимо соблюдение ряда условий:

  • гены разных аллельных пар (неаллельные) должны находиться в разных парах (негомологичных) хромосом;
  • между генами не должно быть сцепления и взаимодействия, кроме полного доминирования;
  • должна быть равная вероятность образования гамет и зигот разного типа и равная вероятность выживания организмов с разными генотипами (не должно быть летальных генов).

В основе независимого наследования генов разных аллельных пар лежит генный уровень организации наследственного материала, заключающийся в том, что гены относительно независимы друг от друга.

Неаллельные гены в одной хромосоме фото
Если неаллельные гены лежат в одной паре гомологичных хромосом, то запись будет выглядеть так

Отклонения от третьего закона Менделя

Отклонения от ожидаемого расщепления по законам Менделя вызывают летальные гены. Например, при скрещивании гетерозиготных каракульских овец расщепление в F1 составляет 2:1 (вместо ожидаемого 3:1). Ягнята, гомозиготные по доминантной аллели серой окраски (W), нежизнеспособны и погибают из-за недоразвития рубца желудка.

У человека аналогично наследуется доминантный ген брахидактилии (короткие толстые пальцы). У гетерозигот наблюдается брахидактилия, а гомозиготы па этому гену погибают на ранних стадиях эмбриогенеза.

У человека имеется ген нормального гемоглобина и ген серповидно-клеточной анемии (HbS). Гетерозиготы по этим генам жизнеспособны, а гомозиготы по HbS погибают в раннем детском возрасте (гемоглобин S не способен связывать и переносить кислород).

Затруднения в интерпретации результатов скрещивания (отклонения от законов Менделя) может вызвать и явление плейотропии, когда один ген отвечает за проявление нескольких признаков. Так, у гомозиготных серых каракульских овец ген W детерминирует не только серую окраску шерсти, но и недоразвитие пищеварительной системы.

Примерами плейотропного действия гена у человека служат синдромы Марфана и «голубых склер». При синдроме Марфана изменение одного гена приводит к развитию «паучьих пальцев», подвывиха хрусталика, деформированной грудной клетки, аневризмы аорты, высокого свода стопы.

При синдроме «голубых склер» у человека наблюдаются голубая окраска склер, ломкость костей и пороки развития сердца. При плейотропии, вероятно, наблюдается недостаточность ферментов, активных в нескольких типах тканей или в одной, но широко распространенной. В основе синдрома Марфана, по-видимому, лежит один и тот же дефект развития соединительной ткани.

Задачи на дигибридное скрещивание с решением

  1. У человека глухонемота наследуется как аутосомный рецессивный признак, а подагра – как доминантный признак. Оба гена лежат в разных парах хромосом. Определите вероятность рождения глухонемого ребёнка с предрасположенностью к подагре у глухонемой матери, не страдающей подагрой и у мужчины с нормальным слухом и речью, болеющего подагрой.

Рассуждение:

  • это прямая задача, так как из описания известны генотипы родителей, а узнать нужно генотипы и фенотипы потомков. Доминирование полное, признака 2, значит скрещивание дигибридное.
  • вводим буквенные обозначения доминантного и рецессивного признаков: глухонемота – а, норма по данному признаку – А, подагра доминантный признак – В, её отсутствие – в.
  • определяем генотипы родителей. Мать глухонемая, значит её набор аллелей однозначен – аа, она не страдает подагрой, у неё отсутствует доминантный аллель по этому признаку – вв. Генотип матери аавв. Отец может иметь несколько вариантов генотопов. Он не глухонемой, но может быть носителем, тогда либо Аа, либо АА. Он болен подагрой, но его второй аллеьный ген может быть нормальным: либо Вв, либо ВВ. Нужно рассмотреть несколько вариантов решения задачи с разными возможными генотипами отца: АаВв, АаВВ, ААВв и ААВВ. Жаль, что в задаче не сказано, что родители дигомозиготы.
  • составляем схемы скрещивания и определяем генотипы и фенотипы потомков.

Вариант 1.

P:♀ аавв♂ АаВв
G:авАВ, Ав, аВ, ав

 

              ♂

АВАваВав
авАаВвАаввааВваавв
авАаВвАаввааВваавв
авАаВвАаввааВваавв
авАаВвАаввааВваавв

 

Генотип ребёнка с предрасположенностью к подагре при данном генотипе родителей – ааВв. Вероятность рождения таких детей составляет 25%, или ¼ часть.

Вариант 2.

P:♀ аавв♂ АаВВ
G:авАВ, аВ
F1:АаВв, ааВв

 

Вероятность рождения глухонемых детей с предрасположенностью к подагре составляет 50%.

Вариант 3.

P:♀ аавв♂ ААВв
G:авАВ, Ав
F:АаВв, Аавв

Вероятность — 0%

Вариант 4.

P♀ аавв♂ ААВВ
GавАВ
FАаВв

Вероятность — 0%.

 

  1. У свиней чёрная окраска шерсти (А) доминирует над рыжей (а), а длинная щетина (В) над короткой (в). Гены не сцеплены. Какое потомство может быть получено при скрещивании чёрного с длинной щетиной дигетерозиготного самца с гомозиготной чёрной самкой с короткой шерстью. Определите генотипы родителей, потомства, фенотипы потомства и их соотношение.

Рассуждение:

Задача более однозначна, в ней чётко сказано, что самец дигетерозиготен, а самка гомозиготна.

  • Определяем генотипы родителей. Чёрный (А) самец с длинной шерстью (В) дигетерозиготен – АаВв. Чёрная (А) самка с короткой (в) шерстью гомозиготна – ААвв.
  • Определяем гаметы родителей.
P:♀ ААвв♂ АаВв
G:АвАВ, Ав, аВ, ав

 

  • Записываем схему скрещивания в решётку Пеннета. Так как у матери один тип гамет, строк нам хватит и 2.
                  ♂

АВАваВав
АвААВв

Чёрный с длинной шерстью

 

ААвв

Чёрный с короткой шерстью

АаВв

Чёрный с длинной шерстью

Аавв

чёрный короткошёрстный

 

Ответ: генотипы родителей: самка – Аавв, самец – АаВв, генотипы потомства: ААВв, ААвв, АаВв, Аавв; фенотипы потомства и их соотношение: 2 чёрных длинношерстных : 2 чёрных короткошерстных.

  1. Известно, что карий цвет глаз (D) и тёмные волосы (С) – доминантные признаки. Кареглазый брюнет, гетерозиготный по обоим признакам женился на голубоглазой блондинке. Определите генотипы родителей, а также возможные генотипы и фенотипы детей этой пары.

Рассуждаем:

Задача на дигибридное скрещивание раз описывают два разных признака. Доминирование полное.

Решаем

  • Определяем генотипы родителей. Кареглазый брюнет гетерозиготный по обоим признаком – один вариант генотипа: DdCc, голубоглазая блондинка – также один вариант: ddcc.
  • Определяем типы их гамет.
P:♀ ddcc♂ DdCc
G:dcDC, Dc, dC, dc
  • Записываем скрещивание в решётку Пеннета и определяем фенотипы и генотипы возможных потомков.
                 ♂

DCDcdCdc
dcDdCc

кареглазый

брюнет

Ddcc

кареглазый

блондин

ddCc

голубоглазый

брюнет

ddcc

голубоглазый

блондин

 

 

 

 

Ответ: генотипы родителей: мать – ddcc, отец – DdCc; возможные генотипы детей – DdCc, Ddcc, ddCc, ddcc; возможные фенотипы детей – кареглазый брюнет, кареглазый блондин, голубоглазый брюнет, голубоглазый блондин в соотношении 1:1:1:1.

 

 

Дигибридное скрещивание. Закон независимого наследования. Урок 3

Добавить комментарий

Ваш e-mail не будет опубликован.

Яндекс.Метрика